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We consider discrete time models for asset prices with a stationary volatility process. We aim at
estimating the multivariate density of this process at a set of consecutive time instants. A Fourier-type
deconvolution kernel density estimator based on the logarithm of the squared process is proposed to
estimate the volatility density. Expansions of the bias and bounds on the variance are derived.
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1. Introduction

Suppose that we have price data of a certain asset in a financial market. By X, we denote the
detrended or demeaned log-return process. It is commonly believed that stochastic volatility
models of the form

Xt = σtZt (1)

describe much of the observed behavior of this type of data. Here, Z is typically an i.i.d. noise
sequence (often Gaussian) and at each time t the random variables σt and Zt are independent.
See the survey papers by Ghysels et al. [1] or Shephard [2]. We will assume that the process σ

is strictly stationary and that the (multivariate) marginal distributions of σ have a density with
respect to the Lebesgue measure on (0, ∞). Our aim is to construct a nonparametric estimator
for the multivariate density of (σt , . . . , σt+p − 1) and to study its asymptotic behavior.

Models that are used in the literature to describe the volatility display rather different
invariant distributions. This observation lies at the basis of our point of view, which we pursue
in this paper, that nonparametric estimation procedures are by all means sensible tools to get
some insight in the behavior of the volatility. Quite often in models that are used in practice, the

*Corresponding author. Email: spreij@science.uva.nl

Nonparametric Statistics
ISSN 1048-5252 print/ISSN 1029-0311 online © 2005 Taylor & Francis Ltd

http://www.tandf.co.uk/journals
DOI: 10.1080/1048525042000267752



238 B. Van Es et al.

invariant distributions of σ are unimodal. As it is known that volatility clustering is an often-
occurring phenomenon, it is hard to believe that this can be explained by any of these models.
Instead, one would expect in such a case, for instance, the distribution of (σt , σt+1) to have
a density that has concentration regions around the diagonal with possibly peaks at certain
clusters of low and high volatility, a phenomenon that may lead to, for instance, bimodal one-
dimensional marginal distributions. Nonparametric density estimation could perhaps reveal
such a shape of the invariant density of the volatility.

We will distinguish two classes of models in this paper. In both the classes, we will assume
that the noise sequence is standard Gaussian and that σ is a strictly stationary, positive process
satisfying a certain mixing condition. However, the way in which the bivariate process (σ, Z),
in particular its dependence structure, is further modeled differs. In the first class of models
that we consider, we assume that the process σ is predictable with respect to the filtration Ft

generated by the process Z. Note that σt is independent of Zt for each fixed time t . Furthermore,
we have that (assuming that the unconditional variances are finite) σ 2

t is equal to the conditional
variance of Xt given Ft−1. This class of models has become quite popular in the econometrics
literature. Financial data such as log-returns of stock prices or exchange rates are believed to
share a number of stylized features, including heavy-tailedness and long-range dependence.
Models of the type (1) have been proposed to capture those features. A well-known family
included in the class (1) is the family of GARCH-models, introduced by Bollerslev [3]. For
the GARCH(p, q)-model the sequence {σt } in equation (1) is assumed to satisfy the equation

σ 2
t = α0 +

p∑
i=1

αiX
2
t−i +

q∑
j=1

βjσ
2
t−j , (2)

where the αi and βj are non-negative constants. Under suitable assumptions (see ref. [4, 5])
GARCH processes are stationary and the statistical problem in this case would be to estimate
the coefficients αi and βj in equation (2).

In the second class of models that we consider, we assume that the whole process σ is
independent of the noise process Z. In this case, the natural underlying filtration F = {Ft }t≥0

is generated by the two processes Z and σ in the following way. For each t , the σ -algebra
Ft is generated by Zs , s ≤ t and σs , s ≤ t + 1. This choice of the filtration enforces σ to be
predictable. As in the first model, the process X becomes a martingale difference sequence and
we have again (assuming that the unconditional variances are finite) that σ 2

t is the conditional
variance of Xt given Ft−1. An example of such a model is given in De Vries [6], where σ is
generated as an AR(1) process with α-stable noise (α ∈ (0, 1)).

As we said earlier, we do not want to make a parametric assumption such as equation (2), but
we still want to measure the volatility of the data somehow. In the present paper, we propose a
nonparametric statistical procedure for this problem. Using ideas from deconvolution theory,
we will propose a procedure for the estimation of the marginal density at a fixed point. To
assess the quality of our procedure, we will derive expansions of the bias and bounds on the
variance. This will be done separately for the two kinds of model classes outlined earlier.

2. The estimators

We first briefly review the construction of the deconvolution kernel density estimator based
on i.i.d. observations. These kernel type estimators have been introduced by Carroll and Hall
[7], Liu and Taylor [8], Stefanski [9], and Stefanski and Carroll [10] (see also ref. [11]). For
simplicity, we treat in a standard setting the univariate case only. Let a random variable X
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be equal to the sum of two independent random variables, say Y , with unknown density f ,
and Z, with known density k. The density g of X is the convolution of f and k and for the
corresponding characteristic functions φg(t), φf (t), and φk(t), we have

φg(t) = φf (t)φk(t). (3)

The objective is to estimate f from i.i.d. observations of X1, . . . , Xn having density g. In
identity (3), we know φk(t) and we can estimate φg(t) by the characteristic function of a
kernel estimator gnh of g. Therefore, let

gnh(x) = 1

n

n∑
j=1

1

h
w

(
x − Xj

h

)
,

where w is an integrable function with integral one, the kernel function, and h > 0 is a positive
number, the bandwidth. The characteristic function φgnh

of gnh is then given by

φgnh
(t) = φw(ht)φemp(t), (4)

where φemp(t) = 1/n
∑n

j=1 eitXj is the empirical characteristic function and φw is the Fourier
transform of w. From equations (3) and (4), we see that

φw(ht)φemp(t)

φk(t)
(5)

is an obvious candidate to estimate φf . Its inverse Fourier transform fnh is then used to estimate
f . Therefore, the estimator fnh of f is

fnh(x) = 1

2π

∫ ∞

−∞
e−itx φw(ht)φemp(t)

φk(t)
dt. (6)

The inversion is allowed, if the function (5) is integrable. In general, this is not guaran-
teed. However, to enforce integrability, we assume that φw has a bounded support. Note that
equation (6) can be rewritten as

fnh(x) = 1

nh

n∑
j=1

vh

(
x − Xj

h

)
, (7)

where

vh(x) = 1

2π

∫ ∞

−∞
φw(s)

φk(s/h)
e−isx ds. (8)

It is easy to see that the function vh, and hence the estimator fnh(x), is real valued.
We now turn to the model (1), therefore Xt = σtZt . If we square this equation and take

logarithms, we get

log X2
t = log σ 2

t + log Z2
t . (9)

Recall that under our assumptions for each t , the random variables σt and Zt are independent.
The density of log Z2

t , denoted by k, is given by

k(x) = 1√
2π

e(1/2)xe−(1/2)ex

. (10)

We will use a deconvolution kernel density estimator to estimate the unknown density f of
log σ 2

t . An estimate of the density of σ 2
t or σt can then be obtained by a simple transformation.
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Computing the characteristic function φk of log Z2, we get

φk(t) = 1√
π

2it�

(
1

2
+ it

)
, (11)

where � denotes the gamma function. For the model (1), this leads to the estimator

fnh(x) = 1

nh

n∑
j=1

vh

(
x − log X2

j

h

)
(12)

of the density f of log σ 2
t , with vh(x) as in equation (8).

The expression for the estimator of the density of the p-dimensional random vector
(log σ 2

t , . . . , log σ 2
t−p+1) is similar. We first introduce some auxiliary notation. Let p be fixed

and write xj for a vector (xj , . . . , xj−p+1). We use similar boldface expressions for other
(random) vectors. The kernel w that we use in the multivariate case is just a product kernel,
w(x) = ∏p

j=1 w(xj ). Likewise, we take k(x) = ∏p

j=1 k(xj ) and the Fourier transforms φw,
and φk factorize as well. Let vh be defined by

vh(x) = 1

(2π)p

∫
Rp

φw(s)
φk(s/h)

e−is·x ds, (13)

where s ∈ R
p and ‘·’denotes inner product. Notice that we also have the factorization vh(x) =∏p

j=1 vh(xj ). The multivariate density estimator that we will use is given by

fnh(x) = 1

(n − p + 1)hp

n∑
j=p

vh

(
x − log X2

j

h

)
, (14)

where we use log X2
j to denote the vector

(
log X2

j , . . . , log X2
j−p+1

)
.

3. Asymptotics

The bias of the deconvolution estimator described in section 2 will be seen to be the same
as the bias of a kernel density estimator based on independent observations from f . Hence,
under standard smoothness assumptions, it is of order h2 as h → 0. The variance of this type
of deconvolution estimator heavily depends on the rate of decay to zero of |φk(t)| as |t | → ∞.
The faster the decay, the larger the asymptotic variance. In other words, the smoother the k, the
harder the estimation problem. This follows, for instance, for i.i.d. observations from results
in Fan [12] and for stationary observations from the work of Masry [13–15].

The rate of decay of |φk(t)| for the density equation (10) is given by Lemma 5.1 in section 5,
where we show that

|φk(t)| ∼ √
2e−(1/2)π |t |, as |t | −→ ∞. (15)

By the similarity of the tail of this characteristic function to the tail of a Cauchy characteristic
function, we can expect the same order of the mean squared error as in Cauchy deconvolution
problems, where it decreases logarithmically in n (cf. ref. [12] for results on i.i.d. observations).
Note that this rate, however slow, is faster than the one for normal deconvolution.

In the model (9), the sequence {log X2
t } is not independent; therefore, results on the asymp-

totic behavior of the kernel estimator of section 2 are not directly applicable. In the literature,
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also more general deconvolution problems have been studied, where the i.i.d. assumption
has been relaxed. For instance, the deconvolution model Xj = Yj + Zj , where {Yj , Zj }
is a stationary sequence and the sequences {Zj } {Y } are independent has been treated by
Masry [13–15].

Expansions for the variance of the deconvolution kernel estimator have been derived under
several mixing conditions. Under the assumption that the volatility process is independent of
the noise sequence, the model (9) fits into this scheme. We will obtain similar results for the
estimator, when σ (as a process) is not independent of Z, but only predictable with respect to
the filtration generated by Z.

Let us define the mixing conditions. For a certain process {Xj }, let Fb
a be the σ -algebra of

events generated by the random variables Xj, j = a, . . . , b. Let the mixing coefficient αk be
defined by

αk = sup
A∈F0−∞,B∈F∞

k

|P(AB) − P(A)P (B)|. (16)

We call a process {Xj } strongly mixing, if αk → 0 as k → ∞.
To obtain expansions for the bias and variance, we also need conditions on the kernel

function w such as bounded support of its characteristic function φw(t). Moreover, the rate of
decay to zero of φw(t) at the boundary of its support turns up in the asymptotics. The complete
list of assumptions on w that we use is as follows.

Condition W Let w be a real symmetric function satisfying

1.
∫ ∞
−∞ |w(u)| du < ∞,

2.
∫ ∞
−∞ w(u) du = 1,

3.
∫ ∞
−∞ u2w(u) du < ∞,

4. lim|u|→∞ w(u) = 0,
5. φw, the characteristic function of w has support [−1, 1],
6. φw(1 − t) = Atρ + o(tρ), as t ↓ 0 for some ρ > 0.

Note that by Fourier inversion these conditions imply that w is bounded and Lipschitz. More
precisely, we have

|w(x)| ≤ 1

2π
and |w(x + u) − w(x)| ≤ 1

2π
|u|. (17)

An example of such a kernel, from Wand [16], with ρ = 3 and A = 8, is

w(x) = 48x(x2 − 15) cos x − 144(2x2 − 5) sin x

πx7
. (18)

It has characteristic function

φw(t) = (1 − t2)3, |t | ≤ 1. (19)

The next theorem, whose proof can be found in section 5, establishes the expansion of the
bias and an order bound on the variance of our estimator under a strong-mixing condition.
Under broad conditions, this mixing condition is satisfied if the process σ is a Markov
chain, since then convergence of αk to zero takes place at an exponential rate (see The-
orems 4.2 and 4.3 of Bradley, [17] for precise statements). Similar behavior occurs for
ARMA processes with absolutely continuous distributions of the noise terms (ref. [17],
Example 6.1).
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THEOREM 3.1 Assume that the process X is strongly mixing with coefficient αk satisfying

∞∑
j=1

α
β

j < ∞,

for some β ∈ (0, 1). Let the kernel function w satisfy Condition W and let the density f of the
p-vector (log σ 2

1 , . . . , log σ 2
p) be bounded and twice continuously differentiable with bounded

second-order partial derivatives. Assume that σ is a predictable process with respect to the
filtration generated by the process Z. Then, we have for the estimator of the multivariate
density defined as in equation (14) and h → 0

E fnh(x) = f (x) + 1

2
h2

∫
u	∇2f (x)u w(u) du + o(h2) (20)

and

Var fnh(x) = O

(
1

n
(h2ρ−βeπ/h)p

)
. (21)

THEOREM 3.2 Assume that the process σ is strongly mixing with coefficient αk satisfying

∞∑
j=1

α
β

j < ∞,

for some β ∈ (0, 1). Let the kernel function w satisfy Condition W and let the density f of the
p-vector (log σ 2

1 , . . . , log σ 2
p) be bounded and twice continuously differentiable with bounded

second-order partial derivatives. Assume that σ and Z are independent processes. Then, the
multivariate density estimator fnh satisfies the same bias expansion as in Theorem 3.1. For
the variance, we have the sharper bound

Var fnh(x) = O

(
1

n
(h2ρeπ/h)p

)
. (22)

Remark 3.3 Because of the exponential factor in the variance bound, in order to obtain
consistency, one has to take essentially h ≥ pπ/ log n (see also ref. [9] for a related problem).
On the other hand, we would like to minimize the bias, therefore, the choice h = pπ/ log n is
optimal. Both the bias and the variance decay at a logarithmic rate for this choice of bandwidth.
This seems disappointing; however, Fan [12] shows for the i.i.d. situation of Section 2 that we
cannot expect anything better.

Remark 3.4 Notice that the results in Masry [14, 15] establishing strong consistency, rates
of convergence and asymptotic normality are not useful here, because the condition that φk

has either purely real or purely imaginary tails is not satisfied.

Remark 3.5 Note that our assumptions in Theorem 3.1 are slightly different from those of
Masry [13]. One of the essential facts that is used in the proof is the mixing property of X. If
σ and Z are independent processes that is implied by a similar assumption on the σ process
itself as in Masry [13].
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Remark 3.6 In the case where the processes σ and Z are independent, the estimators fnh(x)

have the following property:

f̃nh(x) := E[fnh(x)|Fσ ] = 1

nh

n∑
j=1

w

(
x − log σ 2

j

h

)
, (23)

where Fσ denotes the σ -algebra generated by the whole process σ . Thus, the f̃nh(x) would
be ordinary kernel density estimators, if the σ 2

j could be observed.

Equation (23) is seen to be true as follows. Write uj = log X2
j and use similar notation for

ζj = log Z2
j and τj = log σ 2

j . Then,

E

[
vh

(
x − uj

h

)
|Fσ

]
= 1

2π

∫
Eeisζj /h φw(s)

φk(s/h)
e−is(x−τj )/h ds

= 1

2π

∫
φw(s)e−is(x−τj )/h ds

= w

(
x − τi

h

)
.

The result now follows. Of course, the analogous statement for the multivariate density
estimator is equally true. One has

f̃nh(x) := E[fnh(x)|Fσ ] = 1

nhp

n∑
j=p

w

(
x − (log σ 2

j , . . . , log σ 2
j−p+1)

h

)
.

Remark 3.7 Better bounds on the asymptotic variance in Theorem 3.1 can be obtained under
stronger mixing conditions. Consider for instance uniform mixing. In this case, the mixing
coefficient φt is defined for t > 0 as

φt = sup
A∈F0−∞,B∈F∞

t

|P(A|B) − P(A)|. (24)

Similar to strong mixing, a process is called uniform mixing if φt → 0 for t → ∞. Obviously,
uniform mixing implies strong mixing. As a matter of fact, one has the relation

αt ≤ 1

2
φt .

See Doukhan [18] for this inequality and many other mixing properties. If {σt } is uniform
mixing with coefficientφ satisfying

∑∞
j=1 φ(j)1/2 < ∞, then the variance bound equation (21)

can be replaced with the sharper bound equation (22) of Theorem 3.2. The proof of the latter
bound runs similarly to the strong-mixing bound as given in section 5. The essential difference
is that in equation (28) we use Theorem 17.2.3 of Ibragimov and Linnik [19] with τ = 0 instead
of a lemma by Deo [20], as in the proof of Theorem 2 in Masry [21]. The result is that we
can now bound the term Mnh of equation (28) at a constant times

∑n−p+1
j=1 ϕ

1/2
j E W 2

0 . After
this step, the proof is essentially unchanged. Use the estimate E W 2

0 ≤ Chp||v||22 to finish the
proof.

The bound on the variance in Theorem 3.2 cannot be improved upon by strengthening the
assumption that σ is strongly mixing to uniform mixing.
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Remark 3.8 An example of an observed process that is strongly mixing and that belongs
to the first model class is a GARCH(p, q) process. It has been shown in Carasso and
Chen [22] (see also ref. [23]) that such a process is β-mixing with exponentially decay-
ing β-mixing coefficients. Hence, this process is also α-mixing, as the β-mixing coefficient
βk = E ess sup{|P(A|F∞

k ) − P(A)|: A ∈ F0−∞} satisfies the inequality 2αk ≤ β − k (see
ref. [18]). Notice that we also have that the assumption of Theorem 3.1 on the α’s is satisfied
in this case.

4. Numerical examples

In this section, we present some results that give an indication of the quality of the deconvo-
lution estimator. In a number of simulation examples, we compared the obtained estimated
density with the true density, and if this density is unknown, with an estimate of the true density
based on direct observations.An example using real data closes this section. The kernel used to
compute the estimates is the kernel (18) with the characteristic function (19). The bandwidths
are chosen by hand. The estimates have been computed by fast Fourier transforms using the
Mathematica 4.2 package.

4.1 Simulations

We present three estimates based on simulated samples. The processes σ are equal to a
GARCH(1, 1) process, a process that switches between two GARCH based regimes and
an AR(1)-type process described in De Vries [6].

Example 4.1 (a GARCH(1,1) process) The values of the σ process have been generated
according to equation (2), with parameter values p = q = 1, α0 = 1, α1 = 0.7, and β1 = 0.2.
For this process, there are no explicit expressions for the true densities of σ 2 and log(σ 2). The
sample size n is equal to 1000. In figure 1, the dashed line represents a direct kernel estimate
of the density of log(σ 2) based on the 1000 realizations of the log(σ 2) process in the left plot.

Example 4.2 (a process with two regimes) In this example, the log(σ 2) process switches
between two GARCH(1, 1) regimes of the type (2) that have been multiplied by a factor 0.3 to
obtain a smaller signal-to-noise ratio. The corresponding parameter values for the first process

Figure 1. Left: the simulated values of log(σ 2) in Example 4.1. Right: estimate of the density of log(σ 2), n = 1000,
h = 0.4. The solid line is the deconvolution estimate and the dashed line a kernel estimate based on the direct data in
the left plot.
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Figure 2. Left: the simulated values of log(σ 2) in Example 4.2. Right: estimate of the density of log(σ 2), n = 3000,
h = 0.3. The solid line is the deconvolution estimate and the dashed line a kernel estimate based on direct data.

are p = q = l, α0 = 1, α1 = 0.2, and β1 = 0.7 and for the second process p = q = 1, α0 = 2,
α1 = 0.2, and β1 = 0.7. Hence, the switch is in the α0 parameter of the GARCH processes.
At each time instant, a switch occurs with probability p = 0.01, independent of the running
process. Hence, the time intervals between the switches have a geometric(p) distribution.
Again for the resulting process, there are no explicit expressions for the true densities of σ 2

and log(σ 2), but they turn out to be bimodal. The sample size n is equals to 3000. In figure 2,
the dashed line represents a direct kernel estimate of the density of log(σ 2) based on the 3000
realizations of the log(σ 2) process.

Example 4.3 (an AR(1) type process) Here, the σ 2 process has been generated according to
a model described in De Vries [6]. In our notation, the model is as follows:

Xt = σtZt ,

σt = 1

Z2
t−1

+ ασ 2
t−1,

where the Zs are i.i.d. standard normal random variables and 0 ≤ α < 1. We have chosen
α = 0.5. The sample size n is equal to 1000. The true density of σ 2 and log(σ 2) in this model
are known. The graph of the density of log(σ 2) is represented by the dashed line in figure 3.

Figure 3. Left: the simulated values of log(σ 2) in Example 4.3. Right: The estimated density of log(σ 2), n = 1000,
h = 0.4. The solid line is the deconvolution estimate and the dashed line the true density.
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Figure 4. AEX. Left: daily closing values. Right: log of the daily closing values.

Figure 5. AEX. Left: the values of Xt , i.e., the centered daily log returns. Right: log(X2
t ).

4.2 Amsterdam AEX index

We have estimated the volatility density from 2600 daily closing values of theAmsterdam stock
exchange indexAEX from 12/03/1990 until 14/03/2000. These data are represented in figure 4.
We have centered the daily log returns, i.e., we have subtracted the mean (which equaled
0.000636), see figure 5. We have computed the deconvolution estimator (with h = 0.7) and,
based on computations of the mean and the variance of the estimate, we have also fitted
a normal density by hand. The graphs of both estimators are given in figure 6 and show a
remarkable resemblance.

Figure 6. AEX. The deconvolution estimate of the density of log(σ 2
t ) with h = 0.7 (the solid line) and its normal

fit (the dashed line).
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5. Proofs

All the estimators that we proposed involve the functions φk and φw. For these functions and
related ones, we need expansions and order estimates. These will be given first.

LEMMA 5.1 For |t | → ∞, we have

|φk(t)| = √
2e−1/2π |t |

(
1 + O

(
1

|t |
))

.

Proof By the Stirling formula for the complex gamma function (cf. [24] Chap. 6), we have

log �(z) =
(

z − 1

2

)
log z − z + 1

2
log 2π + O

(
1

|z|
)

, (25)

as |z| → ∞ and |Arg z| < π for some δ > 0. Therefore, for z = 1/2 + it and |t | → ∞, we
get

log �

(
1

2
+ it

)
= it log

(
1

2
+ it

)
−

(
1

2
+ it

)
+ 1

2
log 2π + O

(
1

|t |
)

= it

(
log

∣∣∣∣1

2
+ it

∣∣∣∣ + iArg

(
1

2
+ it

))
−

(
1

2
+ it

)
+ 1

2
log 2π + O

(
1

|t |
)

= −tArg

(
1

2
+ it

)
− 1

2
+ 1

2
log 2π + i

(
t log

∣∣∣∣1

2
+ it

∣∣∣∣ − t

)
+ O

(
1

|t |
)

.

Taking the modulus of the exponent the imaginary part vanishes and we get

∣∣∣∣�
(

1

2
+ it

)∣∣∣∣ = exp

(
−t Arg

(
1

2
+ it

))
− 1

2
+ 1

2
log 2π + O

(
1

|t |
)

= √
2π exp

(
−t arctan 2t − 1

2
+ O

(
1

|t |
))

= √
2π exp

(
−1

2
π |t | + O

(
1

|t |
))

= √
2π exp

(
−1

2
π |t |

) (
1 + O

(
1

|t |
))

.

In the third equality, we have used the expansion t arctan t = t (π/2 − arctan(1/t)) =
πt/2 − 1 + O(1/t), as t tends to infinity. For negative t , a similar expansion holds. As
2it = exp(it log 2) has modulus 1, substituting this expansion in equation (11) now proves
the lemma. �

LEMMA 5.2 We have the following order estimate for the L2 norms of the functions vh of
equation (8) and vh of equation (13). For h → 0

||vh||2 = O(h1/2+ρeπ/2h)

||v||2 = O(hp(1/2+ρ)epπ/2h).
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Proof By Parseval’s identity

2π ||vh||2 =
∫ 1

−1

∣∣∣∣ φw(s)

φk(s/h)

∣∣∣∣
2

ds ≤ 1

2

∫ 1

−1
|φw(s)|2weπ |s/h| ds (26)

+ 1

2

∫ 1

−1
|φw(s)|2

∣∣∣∣ 2

|φk(s/h)|2 − eπ |s/h|
∣∣∣∣ ds (27)

The integral in equation (26) can be rewritten as∫ 1

−1
|φw(s)|2eπ |s/h| ds = 2eπ/h

∫ 1

0
|φw(s)|2eπ(s−1)/h ds

= 2eπ/hh

∫ 1/h

0
|φw(1 − hv)|2e−πv dv

∼ 2eπ/hh1+2ρA2
∫ ∞

0
v2ρe−πv dv

= 2eπ/hh1+2ρπ−1−2ρA2�(2ρ + 1),

by the dominated convergence theorem. We rewrite the integral (27) as∫ 1

−1
|φw(s)|2eπ |s/h|

∣∣∣∣ 2e−π |s/h|

|φk(s/h)|2 − 1

∣∣∣∣ ds

= 2eπ/h

∫ 1

0
|φw(s)|2

∣∣∣∣ 2e−πs/h

|φk(s/h)|2 − 1

∣∣∣∣ eπ(s−1)/h ds

= 2h1+2ρeπ/h

∫ 1/h

0

∣∣∣∣ |φw(1 − hv)|
(hv)ρ

∣∣∣∣
2 ∣∣∣∣ 2e−π(1/h−v)

|φk(1/h − v)|2 − 1

∣∣∣∣ v2ρe−πv dv

= 2h1+2ρeπ/ho(1),

by the dominated convergence theorem. We have used the fact that both the functions φw(1 −
u)/uρ , and |(2 exp(−πu)/|φk(u)|2) − 1| are bounded and that the second function is of order
O(1/u) as u tends to infinity (see Lemma 5.1). This shows that the term (27) is negligible
with respect to (26). The order estimate of ||v||2 follows by the product form of v. �

Proof of Theorem 3.1 The expansion (20) follows from Theorem 1 in Masry [13]. To prove
the variance bound (21), we argue as in the proof of Theorem 2 in the same paper. First, we
give a bound on the variance in terms of the L2-norm of the function vh, and then we exploit
the asymptotic expansion of the characteristic function φk as given in Lemma 5.1 to get a
sharper bound on the L2-norm of vh than Masry in his Proposition 3 by taking the behavior
of φw at the boundary of its support into account. Some details follow.

Arguing as in Masry [13], we can show that

Var fnh(x) = O

( ||vh||22
nhp

+ Mnh

)
,

with (up to a multiplicative constant)

Mnh = 1

nh2p

n∑
j=p

Cov(Wj , W0), (28)

where Wj = vh((x − log Xj )/h).
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Applying a lemma by Deo [17], we can bound for a strong-mixing process X with mixing
coefficients αj , the term Mnh by a constant (not depending on n and h) times

1

nh2p

n∑
j=p

α
β

j−p+1{E |Wj |2/(1−β)E |W0|2/(1−β)}(1−β)/2,

which, by stationarity, becomes

1

nh2p

n∑
j=p

α
β

j−p+1(E |W0|2/(1−β))1−β.

Now, observe that, by boundedness of the density of log X2
j , the term E |W0|2/(1−β) can be

bounded by a constant times hp||vh||2/(1−β)

2/(1−β) and that we can therefore write

Var fnh(x) = O


 ||vh||22

nhp
+

n∑
j=p

α
β

j

||vh||22/(1−β)

nhp(1+β)


.

The proof will be finished by application of Lemma 5.2, which gives the L2
2-norm of vh, and an

estimate of the L2/(1−β)-norm of vh. For the latter one, we have the inequalities ||vh||2/(1−β) ≤
||vh||β∞||vh||1−β

2 and ||vh||∞ ≤ C||vh||2, for some constant C by the fact that φw has compact
support. As a result, we get ||vh||2/ ≤ C||vh||2 and that Mnh is less than a constant times
||vh||2/nhp(1+β). The bound on Var fnh(x) of Theorem 3.1 now follows. �

Proof of Theorem 3.2 Let Fσ be the σ -algebra generated by the process σ . We use the
decomposition

Var fnh(x) = E Var (fnh(x)|Fσ ) + Var f̃nh(x), (29)

with f̃nh(x) as in Remark 3.6. Now, we consider the first term in equation (29). Let zj =
(log Z2

j , . . . , log Zj−p+1) and qj = (log σ 2
j , . . . , log σ 2

j−p+1).As the Zi are independent given
Fσ , we can bound the conditional variance by

1

n2h2p

n∑
j=p

E

[(
vh

(
x − qj − zj

h

))2

|Fσ

]

which is by conditional independence and stationarity equal to

1

nh2p

∫ (
vh

(
x − q0 − z

h

))2

k(z) dz ≤ C

nhp
||vh||22,

with C the maximum of k, the density of z0. Therefore, the first term in equation (29) is of
order ||vh||22/nhp, Therefore O(hp(1+2ρ)epπ/h/nhp).

The second term of (29) is treated next. We have with Uj = w((x − qj )/h)

Var f̃nh(x) = 1

n2h2p

∑
j

Var Uj + 2

n2h2p

∑
i<j

Cov(Ui, Uj ).

The first term reduces by stationarity to 1/(nh2p) Var U1 which can be bounded by a constant
times ‖w‖2

2/nhp, as (log σ 2
1 , . . . , log σ 2

p) has by assumption a bounded density. For the second
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term we proceed as in the proof of Theorem 3.1. Using stationarity, we write it as

2

n2h2p

n∑
k=1

(n − k)Cov(Uk, U0).

We split the summation into two parts. In the first part, we consider

p−1∑
k=1

(n − k)Cov(Uk, U0),

whose absolute value can be bounded in view of the Cauchy–Schwarz inequality and
stationarity by (p − 1)n E U 2

0 , which is bounded by (p − 1)nhp||w||22.
The absolute value of the second part

n∑
k=p

(n − k)Cov(Uk, U0)

can be bounded by invoking once more Deo’s result by

n

n∑
k=p

α
β

k−p+1(E |U0|2/(1−β))1−β,

which is less than

nhp(1−β)||w||22/(1−β)

∑
k

α
β

k−p+1.

Hence, we have that Var f̃nh(x) is of order 1/nhp(1+β).
Combining the obtained order estimates for the two terms of equation (29) and using the

L2-norm of the function vh gives the desired result. �
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